An enriched environment improves long-term functional outcomes in mice after intracerebral hemorrhage by mechanisms that involve the Nrf2/BDNF/glutaminase pathway

丰富的环境通过涉及 Nrf2/BDNF/谷氨酰胺酶通路的机制改善小鼠脑出血后的长期功能结果

阅读:6
作者:Peijun Jia, Junmin Wang, Xiuhua Ren, Jinxin He, Shaoshuai Wang, Yinpei Xing, Danyang Chen, Xinling Zhang, Siqi Zhou, Xi Liu, Shangchen Yu, Zefu Li, Chao Jiang, Weidong Zang, Xuemei Chen, Jian Wang

Abstract

Post-stroke depression exacerbates neurologic deficits and quality of life. Depression after ischemic stroke is known to some extent. However, depression after intracerebral hemorrhage (ICH) is relatively unknown. Increasing evidence shows that exposure to an enriched environment (EE) after cerebral ischemia/reperfusion injury has neuroprotective effects in animal models, but its impact after ICH is unknown. In this study, we investigated the effect of EE on long-term functional outcomes in mice subjected to collagenase-induced striatal ICH. Mice were subjected to ICH with the standard environment (SE) or ICH with EE for 6 h/day (8:00 am-2:00 pm). Depressive, anxiety-like behaviors and cognitive tests were evaluated on day 28 with the sucrose preference test, tail suspension test, forced swim test, light-dark transition experiment, morris water maze, and novel object recognition test. Exposure to EE improved neurologic function, attenuated depressive and anxiety-like behaviors, and promoted spatial learning and memory. These changes were associated with increased expression of transcription factor Nrf2 and brain-derived neurotrophic factor (BDNF) and inhibited glutaminase activity in the perihematomal tissue. However, EE did not change the above behavioral outcomes in Nrf2-/- mice on day 28. Furthermore, exposure to EE did not increase BDNF expression compared to exposure to SE in Nrf2-/- mice on day 28 after ICH. These findings indicate that EE improves long-term outcomes in sensorimotor, emotional, and cognitive behavior after ICH and that the underlying mechanism involves the Nrf2/BDNF/glutaminase pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。