Plasminogen activator, urokinase enhances the migration, invasion, and proliferation of colorectal cancer cells by activating the Src/ERK pathway

纤溶酶原激活剂尿激酶通过激活 Src/ERK 通路增强结直肠癌细胞的迁移、侵袭和增殖

阅读:5
作者:Yuanyi Ding, Wenbo Niu, Xiaochuan Zheng, Chaoxi Zhou, Guanglin Wang, Yun Feng, Bin Yu

Background

This paper aims to explore the effects of plasminogen activator, urokinase (PLAU) expression on the migration, invasion, and proliferation of colorectal cancer (CRC) cells and to preliminarily analyze its possible mechanism, thereby laying a foundation for the research on potential biological targets of CRC.

Conclusions

In conclusion, PLAU affects the migration, invasion, and proliferation of CRC cells by activating the Src/ERK pathway.

Methods

CRC-related mRNA was screened in Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/gds/). Differentially expressed genes (DEGs) were obtained for functional enrichment analysis. The enriched pathway and key involved functional gene were screened for further in vitro and in vivo analysis CRC cells were transfected with PLAU-NC (negative control), PLAU-mimic, and PLAU-inhibitor for 48 h and divided into the above groups for later studies. The migration, invasion, and proliferation capacities of CRC cells were detected using wound healing, Transwell, and colony formation assays, respectively. The Src inhibitor saracatinib (AZD0530) was added to the PLAU-NC and PLAU-mimic groups, and the expression levels of Src/extracellular signal-regulated kinase (ERK) pathway-, migration-, invasion-, and proliferation-related proteins were detected by Western blotting.

Results

The results showed that after upregulation of PLAU, the number of CRC cells (SW480) that migrated to the center of the wound significantly increased, the number of cells that migrated and invaded through the basement membrane increased in the PLAU-mimic group, and the number of colonies also increased. These results suggest that increasing PLAU expression promotes the migration, invasion, and proliferation of CRC cells. At the same time, the molecular mechanism of PLAU in CRC cells was investigated by downregulating the protein expression of Src combined with the results of the bioinformatics analysis. Western blotting revealed that the protein expressions of phosphorylated Src (p-Src) and phosphorylated ERK (p-ERK) in SW480 and SW620 cells increased significantly in the PLAU-mimic group compared with the PLAU-NC group, while the results were the opposite in the PLAU-inhibitor group. After being treated with saracatinib, we observed significantly decreased protein levels of p-ERK, matrix metallopeptidase 2 (MMP-2), MMP-3, MMP-9, Cyclin D1, and Cyclin A2 in the SW480 cells. Conclusions: In

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。