Prognostic impact of circulating tumor cells detected with the microfluidic "universal CTC-chip" for primary lung cancer

利用微流控“通用 CTC 芯片”检测循环肿瘤细胞对原发性肺癌的预后影响

阅读:8
作者:Masatoshi Kanayama, Taiji Kuwata, Masataka Mori, Yukiko Nemoto, Natsumasa Nishizawa, Rintaro Oyama, Hiroki Matsumiya, Akihiro Taira, Shinji Shinohara, Masaru Takenaka, Kazue Yoneda, Koji Kuroda, Takashi Ohnaga, Fumihiro Tanaka

Abstract

Detecting rare circulating tumor cells (CTCs) in the bloodstream is extremely challenging. We had previously developed a novel polymeric microfluidic device, "CTC-chip," for capturing CTCs and have shown high capture efficiency in lung cancer cell lines by conjugating Abs against epithelial cell adhesion molecules (EpCAM). This study aimed to optimize the EpCAM-chip and clarify the prognostic impact of CTCs in lung cancer patients. Of 123 patients with pathologically proven lung cancer, both progression-free survival (P = .037) and cancer-specific survival (P = .0041) were predominantly poor when CTCs were detected before treatment. After classification into surgical and chemotherapy groups, progression-free survival was worse in CTC-positive patients in both groups (surgery, P = .115; chemotherapy, P = .012), indicating that the detection of baseline CTCs is a risk factor for recurrence and progression. Furthermore, we recovered captured CTCs using micromanipulators and undertook mutation analysis using PCR. Thus, the EpCAM-chip is a highly sensitive system for detecting CTCs that contributes to the prediction of recurrence and progression and enables genetic analysis of captured CTCs, which could open new diagnostic, therapeutic, and prognostic options for lung cancer patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。