Bacterial nanocellulose-reinforced gelatin methacryloyl hydrogel enhances biomechanical property and glycosaminoglycan content of 3D-bioprinted cartilage

细菌纳米纤维素增强明胶甲基丙烯酰水凝胶增强3D生物打印软骨的生物力学性能和糖胺聚糖含量

阅读:5
作者:Jinshi Zeng, Litao Jia, Di Wang, Zhuoqi Chen, Wenshuai Liu, Qinghua Yang, Xia Liu, Haiyue Jiang

Abstract

Tissue-engineered ear cartilage scaffold based on three-dimensional (3D) bioprinting technology presents a new strategy for ear reconstruction in individuals with microtia. Natural hydrogel is a promising material due to its excellent biocompatibility and low immunogenicity. However, insufficient mechanical property required for cartilage is one of the major issues pending to be solved. In this study, the gelatin methacryloyl (GelMA) hydrogel reinforced with bacterial nanocellulose (BNC) was developed to enhance the biomechanical properties and printability of the hydrogel. The results revealed that the addition of 0.375% BNC significantly increased the mechanical properties of the hydrogel and promoted cell migration in the BNC-reinforced hydrogel. Constructs bioprinted with chondrocyte-laden BNC/GelMA hydrogel bio-ink formed mature cartilage in nude mice with higher Young's modulus and glycosaminoglycan content. Finally, an auricle equivalent with a precise shape, high mechanics, and abundant cartilage-specific matrix was developed in vivo. In this study, we developed a potentially useful hydrogel for the manufacture of auricular cartilage grafts for microtia patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。