Polychlorinated Biphenyl Quinone Metabolite Promotes p53-Dependent DNA Damage Checkpoint Activation, S-Phase Cycle Arrest and Extrinsic Apoptosis in Human Liver Hepatocellular Carcinoma HepG2 Cells

多氯联苯醌代谢物促进人肝细胞癌 HepG2 细胞中 p53 依赖性 DNA 损伤检查点激活、S 期周期停滞和外源性细胞凋亡

阅读:5
作者:Xiufang Song, Lingrui Li, Qiong Shi, Hans-Joachim Lehmler, Juanli Fu, Chuanyang Su, Xiaomin Xia, Erqun Song, Yang Song

Abstract

Polychlorinated biphenyls (PCBs) are a group of persistent organic pollutants. The toxic behavior and mechanism of PCBs individuals and congeners have been extensively investigated. However, there is only limited information on their metabolites. Our previous studies have shown that a synthetic PCB metabolite, PCB29-pQ, causes oxidative damage with the evidence of cytotoxicity, genotoxicity, and mitochondrial-derived intrinsic apoptosis. Here, we investigate the effects of PCB29-pQ on DNA damage checkpoint activation, cell cycle arrest, and death receptor-related extrinsic apoptosis in human liver hepatocellular carcinoma HepG2 cells. Our results illustrate that PCB29-pQ increases the S-phase cell population by down-regulating cyclins A/D1/E, cyclin-dependent kinases (CDK 2/4/6), and cell division cycle 25A (CDC25A) and up-regulating p21/p27 protein expressions. PCB29-pQ also induces apoptosis via the up-regulation of Fas/FasL and the activation of caspase 8/3. Moreover, p53 plays a pivotal role in PCB29-pQ-induced cell cycle arrest and apoptosis via the activation of ATM/Chk2 and ATR/Chk1 checkpoints. Cell cycle arrest and apoptotic cell death were attenuated by the pretreatment with antioxidant N-acetyl-cysteine (NAC). Taken together, these results demonstrate that PCB29-pQ induces oxidative stress and promotes p53-dependent DNA damage checkpoint activation, S-phase cycle arrest, and extrinsic apoptosis in HepG2 cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。