Overexpression and translocation of dynamin 2 promotes tumor aggressiveness in breast carcinomas

动力蛋白 2 的过度表达和易位促进乳腺癌的肿瘤侵袭性

阅读:8
作者:Roya Sajed, Leili Saeednejad Zanjani, Mandana Rahimi, Maryam Mansoori, Amir-Hassan Zarnani, Zahra Madjd, Roya Ghods

Abstract

Dynamin 2 is a GTPase protein that has been implicated in cancer progression through its various roles such as endocytosis, morphogenesis, epithelial-mesenchymal transition (EMT), cellular contractions, and focal adhesion maturation. The increased expression levels of this molecule have been demonstrated with the development of several cancers such as prostate, pancreas, and bladder. However, its clinical significance in breast cancer is unclear yet. In the present study, the membranous, cytoplasmic, and nuclear expression levels of dynamin 2 molecule were evaluated for the first time, using immunohistochemistry (IHC) on tissue microarray (TMA) slides in 113 invasive breast cancer tissues. Moreover, afterward, the association between the dynamin 2 expression and clinicopathological features was determined. Our finding showed that, a higher nuclear expression of dynamin 2 is significantly associated with an increase in tumor stage (P = 0.05), histological grade (P = 0.001), and age of the patients (P = 0.03). In addition, analysis of the cytoplasmic expression levels of this molecule revealed that, there was a statistically significant difference between the expression levels of dynamin 2 among the different breast cancer subtypes (P = 0.003). Moreover, a significant association was found between the increased expression of dynamin 2 membranous and vascular invasion (VI) (P = 0.02). We showed that dynamin 2 protein expression has an association with more aggressive tumor behavior and more advanced disease in the patients with breast cancer; therefore, dynamin 2 molecule could be considered as an indicator of disease progression and aggressiveness.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。