Network Pharmacology Approach to Investigate the Mechanism of Danggui-Shaoyao-San against Diabetic Kidney Disease

网络药理学方法探讨当归芍药散治疗糖尿病肾病的作用机制

阅读:9
作者:Yulian Chen, Xiaodan Song, Yunxia Luo, Guandong Li, Yueming Luo, Ziyan Wang, Riming He, Jiandong Lu, Guoliang Xiong, Hong Cheng, Huilin Li, Shudong Yang

Background

Danggui-Shaoyao-San (DSS) is a traditional Chinese medicine formula that has been widely used to treat a variety of disorders, including renal diseases. Despite being well-established in clinical practice, the mechanisms behind the therapeutic effects of DSS on diabetic nephropathy (DN) remain elusive.

Conclusion

This study discovered the putative molecular mechanisms of action of DSS against diabetic kidney damage through a network pharmacology approach and experimental validation.

Methods

To explore the therapeutic mechanism, we explored the action mechanism of DSS on DN using network pharmacology strategies. All ingredients were selected from the relevant databases, and active ingredients were chosen on the basis of their oral bioavailability prediction and drug-likeness evaluation. The putative proteins of DSS were obtained from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, whereas the potential genes of DN were obtained from the GeneCards and OMIM databases. Enrichment analysis using gene ontology (GO) and the Kyoto encyclopedia of genes and genomes (KEGG) was performed to discover possible hub targets and gene-related pathways. Afterwards, the underlying molecular mechanisms of DSS against DN were validated experimentally in vivo against db/db mice.

Results

We identified 91 phytochemicals using the comprehensive network pharmacology technique, 51 of which were chosen as bioactive components. There were 40 proteins and 20 pathways in the target-pathway network. The experimental validation results demonstrated that DSS may reduce the expression of TNF-α, IL-6, and ICAM-1, as well as extracellular matrix deposition, by blocking the JNK pathway activation, which protects against kidney injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。