Background
CAR-T cell therapy is effective in the treatment of certain hematological malignancies, and the expansion and functional persistence of CAR-T cells in vivo are crucial to clinical efficacy. The
Conclusion
Our findings indicate that antigen-expressing EVs can be utilized as a boost to improve CAR-T cell efficacy in vitro and in vivo.
Methods
We generated HEK293T-derived EVs to present the CD19 antigen as the CAR target. In vitro, EVs expressing CD19 antigen (CD19 EVs) were co-incubated with anti-CD19 CAR-T cells. Then, proliferation, cytokine secretion, CD107a expression, tumor killing, subsets, and immune checkpoint expression were measured to assess CAR-T cell function. After infusion of CD19 EVs pretreated CAR-T cells into a lymphoma xenograft mouse model, flow cytometry and digital PCR were used to measure the expansion of CAR-T cells, and tumor volumes were continuously monitored to assess the anti-tumor efficacy of CAR-T cells in vivo. Another mouse model was created to investigate the effect of in vivo injection of CD19 EVs on the functional persistence of CAR-T cells, and safety was determined by histopathology of the main organs.
Results
CD19 EVs activated CAR-T cells in an antigen-specific and dose-dependent manner and promoted the selective expansion and cytokine secretion of co-cultured CAR-T cells. Specifically, CD19 EVs preferably increased the expansion of the CAR-T subpopulation with a high surface CD19-CAR density and consequently enhanced the anti-tumor activity of CAR-T cells. Futhermore, CD19-EVs-primed CAR-T cells achieved superior proliferation and anti-tumor effects in a mouse model with lymphoma xenograft. In vivo administration of CD19 EVs promoted the functional persistence of CAR-T cells in the xenograft mouse model.
