Arginine Methylation of β-Catenin Induced by PRMT2 Aggravates LPS-Induced Cognitive Dysfunction and Depression-Like Behaviors by Promoting Ferroptosis

PRMT2 诱导的 β-Catenin 精氨酸甲基化促进铁死亡,加重 LPS 诱导的认知功能障碍和抑郁样行为

阅读:5
作者:Lei Mao #, Jiyue You #, Min Xie, Yunxia Hu, Qin Zhou

Abstract

Depression is a prevalent and debilitating psychiatric disorder, imposing substantial societal and individual burdens. This study aims to investigate the involvement of ferroptosis and microglial polarization in the pathogenesis of depression, as well as the underlying mechanism. Increased protein arginine methyltransferase 2 (PRMT2) expression was observed in BV2 cells and the hippocampus following lipopolysaccharide (LPS) stimulation. Mechanistically, alkylation repair homolog protein 5 (ALKBH5)-mediated m6A modification enhanced the stability of PRMT2 mRNA. PRMT2 promoted arginine methylation of β-catenin and induced proteasomal degradation of β-catenin proteins, resulting in transcriptional inhibition of glutathione peroxidase 4 (GPX4). The upregulation of PRMT2 further accelerated microglia polarization by activating ferroptosis through the β-catenin-GPX4 axis. Depletion of PRMT2 improved LPS-induced depressive- and anxiety-like behaviors as well as cognitive impairment by inhibiting ferroptosis and M1 polarization of microglia. Our findings underscore the crucial involvement of the ALKBH5-PRMT2-β-catenin-GPX4 axis in ferroptosis and M1 polarization of microglia, thereby offering novel insights into the pathogenesis interventions for depression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。