Autophagy in neonatal hypoxia ischemic brain is associated with oxidative stress

新生儿缺氧缺血性脑组织自噬与氧化应激相关

阅读:11
作者:Qing Lu, Valerie A Harris, Sanjv Kumar, Heidi M Mansour, Stephen M Black

Abstract

Autophagy is activated when the neonatal brain exposed to hypoxia ischemia (HI), but the mechanisms underlying its activation and its role in the neuronal cell death associated with HI is unclear. We have previously shown that reactive oxygen species (ROS) derived from nicotinamide adenine dinucleotide phosphate (NADPH) oxidase play an important role in HI-mediated neuronal cell death. Thus, the aim of this study was to determine if ROS is involved in the activation of autophagy in HI-mediated neonatal brain injury and to determine if this is a protective or deleterious pathway. Initial electron microscopy data demonstrated that autophagosome formation is elevated in P7 hippocampal slice cultures exposed to oxygen-glucose deprivation (OGD). This corresponded with increased levels of LC3II mRNA and protein. The autophagy inhibitor, 3-methyladenine (3-MA) effectively reduced LC3II levels and autophagosome formation in hippocampal slice cultures exposed to OGD. Neuronal cell death was significantly attenuated. Finally, we found that the pharmacologic inhibition of NADPH oxidase using apocynin or gp91ds-tat decreased autophagy in hippocampal slice cultures and the rat brain respectively. Thus, our results suggest that an activation of autophagy contributes to neonatal HI brain injury this is oxidative stress dependent.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。