Effects of Pulsed 810 nm Al-Ga-As Diode Laser on Wound Healing Under Immunosuppression: A Molecular Insight

脉冲 810 nm Al-Ga-As 二极管激光对免疫抑制下伤口愈合的影响:分子洞察

阅读:9
作者:Gaurav K Keshri, Anju Yadav, Saurabh Verma, Bhuvnesh Kumar, Asheesh Gupta

Conclusions

Taken together, these findings would be helpful in better understanding of the molecular aspects involved in pulsed 810 nm laser-mediated dermal wound healing in immunosuppressed rats through regulation of cell survival and proliferation via Ca2+ -calmodulin, Akt, ERK, and redox signaling. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.

Methods

The present study delineates the underlying molecular mechanisms of PBM 810 nm laser-induced full-thickness cutaneous wound repair in immunosuppressed rats at continuous and pulsed wave-mode with power-density of 40 mW/cm 2 , fluence 22.6 J/cm 2 for 10 minutes daily for 7 post-wounding days. Molecular markers were assessed using biochemical, enzyme-linked immunosorbent assay quantification, enzyme kinetics and immunoblots analyses pertaining to inflammation, oxidative stress, cell survival, calcium signaling, and proliferation cascades.

Results

Results distinctly revealed that pulsed 810 nm (10 Hz) PBM potentially influenced the cell survival and proliferation signaling pathway by significantly upregulated phospho-protein kinase B(phospho-Akt), phospho-extracellular-signal-regulated kinase 1 (ERK1), transient receptor potential vanilloid-3 (TRPV3), Ca2+ , calmodulin, transforming growth factor-β1 (TGF-β1), TGF-βR3, and Na + /K + -ATPase pump levels. PBM treatment resulted in reduction of exaggerated inflammatory responses evident by significantly repressed levels of interleukin-1β (IL-1β), IL-6, cyclooxygenase 2 (COX-2), and substance-P receptor (SPR), as well as inhibited apoptotic cell death by decreasing p53, cytochrome C, and caspase 3 levels (P < 0.05), which, in turn, effectively augment the wound repair in immunosuppressed rats. PBM treatment also lowered 4-hydroxynoneal (HNE) adduct level and NADP/NADPH ratio and upregulated the GRP78 expression, which might culminate into reduced oxidative stress and maintained the redox homeostasis. Conclusions: Taken together, these findings would be helpful in better understanding of the molecular aspects involved in pulsed 810 nm laser-mediated dermal wound healing in immunosuppressed rats through regulation of cell survival and proliferation via Ca2+ -calmodulin, Akt, ERK, and redox signaling. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。