Efficacy of hyaluronic acid on intervertebral disc inflammation: An in vitro study using notochordal cell lines and human disc cells

透明质酸对椎间盘炎症的疗效:使用脊索细胞系和人类椎间盘细胞的体外研究

阅读:12
作者:Tatsuya Yamamoto, Satoshi Suzuki, Takeshi Fujii, Yuichiro Mima, Kota Watanabe, Morio Matsumoto, Masaya Nakamura, Nobuyuki Fujita

Abstract

Hyaluronic acid (HA) is widely recognized as a therapeutic target and currently used in medicine. However, HA metabolism during intervertebral disc degeneration (IVDD) has not been completely elucidated. This study aimed to evaluate the efficacy of HA on intervertebral disc (IVD) inflammation and identify the main molecules modulating HA degradation in IVDs. To assess HA function in IVD cells in vitro, we treated human disc cells and U-CH1-N cells, a notochordal nucleus pulposus cell line, with HA or hyaluronidase. Real-time reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis showed that tumor necrosis factor alpha (TNF-α)-mediated induction of the expression of TNF-α and cyclooxygenase-2 (COX2) was clearly neutralized by HA treatment, and the expression of TNF-α and COX2 was significantly induced by hyaluronidase treatment in both cell types. Additionally, Western blot analysis showed that hyaluronidase-induced phosphorylation of p38 and Erk1/2, and that TNF-α-mediated phosphorylation of p38 and Erk1/2 was clearly reduced by HA addition. In degenerating human IVD samples, immunohistochemistry for hyaluronidase showed that the expression of hyaluronidases including HYAL1, HYAL2, and cell migration-inducing protein (CEMIP) tended to increase in accordance with IVDD. In particular, HYAL1 showed statistically significant differences. In vitro study also confirmed a similar phenomenon that TNF-α treatment increased both messenger RNA and protein expression in both cell types. Our results demonstrated that HA could potentially suppress IVDD by regulating p38 and Erk1/2 pathways, and that the expression of HYAL1 was correlated with IVDD progression. These findings indicated that HYAL1 would be a potential molecular target for suppressing IVDD by controlling HA metabolism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。