Transcriptional repression by the HDAC4-RelB-p52 complex regulates multiple myeloma survival and growth

HDAC4-RelB-p52复合物的转录抑制调节多发性骨髓瘤的存活和生长

阅读:5
作者:Subrahmanya D Vallabhapurapu, Sunil K Noothi, Derek A Pullum, Charles H Lawrie, Rachel Pallapati, Veena Potluri, Christian Kuntzen, Sohaib Khan, David R Plas, Robert Z Orlowski, Marta Chesi, W Michael Kuehl, P Leif Bergsagel, Michael Karin, Sivakumar Vallabhapurapu

Abstract

Although transcriptional activation by NF-κB is well appreciated, physiological importance of transcriptional repression by NF-κB in cancer has remained elusive. Here we show that an HDAC4-RelB-p52 complex maintains repressive chromatin around proapoptotic genes Bim and BMF and regulates multiple myeloma (MM) survival and growth. Disruption of RelB-HDAC4 complex by a HDAC4-mimetic polypeptide blocks MM growth. RelB-p52 also represses BMF translation by regulating miR-221 expression. While the NIK-dependent activation of RelB-p52 in MM has been reported, we show that regardless of the activation status of NIK and the oncogenic events that cause plasma cell malignancy, several genetically diverse MM cells including Bortezomib-resistant MM cells are addicted to RelB-p52 for survival. Importantly, RelB is constitutively phosphorylated in MM and ERK1 is a RelB kinase. Phospho-RelB remains largely nuclear and is essential for Bim repression. Thus, ERK1-dependent regulation of nuclear RelB is critical for MM survival and explains the NIK-independent role of RelB in MM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。