Cation desolvation-induced capacitance enhancement in reduced graphene oxide (rGO)

还原氧化石墨烯(rGO)中阳离子去溶化引起的电容增强

阅读:6
作者:Kangkang Ge, Hui Shao, Encarnacion Raymundo-Piñero, Pierre-Louis Taberna, Patrice Simon

Abstract

Understanding the local electrochemical processes is of key importance for efficient energy storage applications, including electrochemical double layer capacitors. In this work, we studied the charge storage mechanism of a model material - reduced graphene oxide (rGO) - in aqueous electrolyte using the combination of cavity micro-electrode, operando electrochemical quartz crystal microbalance (EQCM) and operando electrochemical dilatometry (ECD) tools. We evidence two regions with different charge storage mechanisms, depending on the cation-carbon interaction. Notably, under high cathodic polarization (region II), we report an important capacitance increase in Zn2+ containing electrolyte with minimum volume expansion, which is associated with Zn2+ desolvation resulting from strong electrostatic Zn2+-rGO interactions. These results highlight the significant role of ion-electrode interaction strength and cation desolvation in modulating the charging mechanisms, offering potential pathways for optimized capacitive energy storage. As a broader perspective, understanding confined electrochemical systems and the coupling between chemical, electrochemical and transport processes in confinement may open tremendous opportunities for energy, catalysis or water treatment applications in the future.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。