Lidocaine inhibits influenza a virus replication by up-regulating IFNα4 via TBK1-IRF7 and JNK-AP1 signaling pathways

利多卡因通过 TBK1-IRF7 和 JNK-AP1 信号通路上调 IFNα4 抑制甲型流感病毒复制

阅读:6
作者:Xueer Liu, Fengqing Zheng, Lu Tian, Tian Li, Zelin Zhang, Zhihui Ren, Xiaoxuan Chen, Weiqiang Chen, Kangsheng Li, Jiangtao Sheng

Abstract

Influenza A viruses (IAV), significant respiratory pathogenic agents, cause seasonal epidemics and global pandemics in intra- and interannual cycles. Despite effective therapies targeting viral proteins, the continuous generation of drug-resistant IAV strains is challenging. Therefore, exploring novel host-specific antiviral treatment strategies is urgently needed. Here, we found that lidocaine, widely used for local anesthesia and sedation, significantly inhibited H1N1(PR8) replication in macrophages. Interestingly, its antiviral effect did not depend on the inhibition of voltage-gated sodium channels (VGSC), the main target of lidocaine for anesthesia. Lidocaine significantly upregulated early IFN-I, interferon α4 (IFNα4) mRNA, and protein levels, but not those of early IFNβ in mouse RAW 264.7 cell line and human THP-1 derived macrophages. Knocking out IFNα4 by CRISPR-Cas9 partly reversed lidocaine's inhibition of PR8 replication in macrophages. Mechanistically, lidocaine upregulated IFNα4 by activating TANK-binding kinase 1 (TBK1)-IRF7 and JNK-AP1 signaling pathways. These findings indicate that lidocaine has an incredible antiviral potential by enhancing IFN-I signaling in macrophages. In conclusion, our results indicate the potential auxiliary role of lidocaine for anti-influenza A virus therapy and even for anti-SARS-CoV-2 virus therapy, especially in the absence of a specific medicine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。