Role of RanBP9 on amyloidogenic processing of APP and synaptic protein levels in the mouse brain

RanBP9 对小鼠脑内 APP 淀粉样变性处理和突触蛋白水平的作用

阅读:9
作者:Madepalli K Lakshmana, Crystal D Hayes, Steven P Bennett, Elisabetta Bianchi, Konda M Reddy, Edward H Koo, David E Kang

Abstract

We previously reported that RanBP9 binds low-density lipoprotein receptor-related protein (LRP), amyloid precursor protein (APP), and BACE1 and robustly increased Aβ generation in a variety of cell lines and primary neuronal cultures. To confirm the physiological/ pathological significance of this phenotype in vivo, we successfully generated transgenic mice overexpressing RanBP9 as well as RanBP9-null mice. Here we show that RanBP9 overexpression resulted in >2-fold increase in Aβ40 levels as early as 4 mo of age. A sustained increase in Aβ40 levels was seen at 12 mo of age in both CHAPS-soluble and formic acid (FA)-soluble brain fractions. In addition, Aβ42 levels were also significantly increased in FA-soluble fractions at 12 mo of age. More important, increased Aβ levels were translated to increased deposition of amyloid plaques. In addition, RanBP9 overexpression significantly decreased the levels of synaptophysin and PSD-95 proteins. Conversely, RanBP9-null mice showed increased levels of synaptophysin, PSD-95, and drebrin A protein levels. Given that loss of synapses is the best pathological correlate of cognitive deficits in Alzheimer's disease (AD), increased Aβ levels by RanBP9 observed in the present study provides compelling evidence that RanBP9 may indeed play a key role in the etiology of AD. If so, RanBP9 provides a great opportunity to develop novel therapy for AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。