Resistance exercise preconditioning prevents disuse muscle atrophy by inhibiting apoptosis and protein degradation via SESN2 in C57BL/6J mice

阻力运动预处理通过抑制 C57BL/6J 小鼠的 SESN2 凋亡和蛋白质降解来防止废用性肌肉萎缩

阅读:4
作者:Yating Huang, Chenxin Jiang, Xiuru Li, Sujuan Liu, Yanmei Niu, Li Fu

Aim

To compare the effects of different exercise preconditioning in the context of skeletal muscle atrophy and to investigate the potential involvement of Sestrin2 (SESN2), a stress-inducible protein that can be regulated by exercise, in exercise preconditioning on preventing disuse muscle atrophy.

Conclusion

RE was more effective than AE or CE in preventing disuse muscle atrophy. SESN2 mediated the protective effects of resistance exercise preconditioning on skeletal muscle atrophy.

Methods

Eight-week-old male C57BL/6J mice were randomly assigned to sedentary groups (SD), aerobic exercise groups (AE), resistance exercise groups (RE), and combined exercise groups (CE) with or without 7 days of immobilization. The duration of the exercise intervention was 10 weeks. The effects of different exercise preconditioning to prevent muscle atrophy were analyzed by evaluating skeletal muscle function and mass. Additionally, to investigate the potential underlying mechanism of exercise-induced protection of skeletal muscle, wild-type and SESN2--/-- mice were randomly divided into sedentary group and resistance exercise preconditioning group. C2C12 cells were treated with SESN2 adenoviruses and MK2206 (an AKT inhibitor) for 48 h to elucidate the underlined mechanism.

Results

RE was more effective in preserving skeletal muscle function, muscle mass and maintaining skeletal muscle protein homeostasis than AE and CE under immobilized condition. Importantly, exercise performance, muscle mass to body weight ratio, and the cross-sectional area of muscle fibers were significantly lower in SESN2-/- mice than wild-type mice after resistance exercise preconditioning. Mechanistically, the absence of SESN2 led to activation of the ubiquitin-proteasome system and induction of apoptosis. In vitro experiments showed that MK2206 treatment mitigated the regulatory effects of overexpression-SESN2 on protein hydrolysis and apoptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。