The major secreted protein Msp1/p75 is O-glycosylated in Lactobacillus rhamnosus GG

主要分泌蛋白 Msp1/p75 在鼠李糖乳杆菌 GG 中被 O-糖基化

阅读:5
作者:Sarah Lebeer, Ingmar J J Claes, Crina I A Balog, Geert Schoofs, Tine L A Verhoeven, Kris Nys, Ingemar von Ossowski, Willem M de Vos, Hanne L P Tytgat, Patrizia Agostinis, Airi Palva, Els J M Van Damme, André M Deelder, Sigrid C J De Keersmaecker, Manfred Wuhrer, Jos Vanderleyden

Background

Although the occurrence, biosynthesis and possible functions of glycoproteins are increasingly documented for pathogens, glycoproteins are not yet widely described in probiotic bacteria. Nevertheless, knowledge of protein glycosylation holds important potential for better understanding specific glycan-mediated interactions of probiotics and for glycoengineering in food-grade microbes.

Conclusions

In this study we have provided the first evidence of protein O-glycosylation in the probiotic L rhamnosus GG. The major secreted protein Msp1 is glycosylated with ConA reactive sugars at the serine residues at 106 and 107. Glycosylation is not required for the peptidoglycan hydrolase activity of Msp1 nor for Akt activation capacity in epithelial cells, but appears to be important for its stability and protection against proteases.

Results

Here, we provide evidence that the major secreted protein Msp1/p75 of the probiotic Lactobacillus rhamnosus GG is glycosylated. Msp1 was shown to stain positive with periodic-acid Schiff staining, to be susceptible to chemical deglycosylation, and to bind with the mannose-specific Concanavalin A (ConA) lectin. Recombinant expression in Escherichia coli resulted in a significant reduction in molecular mass, loss of ConA reactivity and increased sensitivity towards pronase E and proteinase K. Mass spectrometry showed that Msp1 is O-glycosylated and identified a glycopeptide TVETPSSA (amino acids 101-108) bearing hexoses presumably linked to the serine residues. Interestingly, these serine residues are not present in the homologous protein of several Lactobacillus casei strains tested, which also did not bind to ConA. The role of the glycan substitutions in known functions of Msp1 was also investigated. Glycosylation did not seem to impact significantly on the peptidoglycan hydrolase activity of Msp1. In addition, the glycan chain appeared not to be required for the activation of Akt signaling in intestinal epithelial cells by Msp1. On the other hand, examination of different cell extracts showed that Msp1 is a glycosylated protein in the supernatant, but not in the cell wall and cytosol fraction, suggesting a link between glycosylation and secretion of this protein. Conclusions: In this study we have provided the first evidence of protein O-glycosylation in the probiotic L rhamnosus GG. The major secreted protein Msp1 is glycosylated with ConA reactive sugars at the serine residues at 106 and 107. Glycosylation is not required for the peptidoglycan hydrolase activity of Msp1 nor for Akt activation capacity in epithelial cells, but appears to be important for its stability and protection against proteases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。