Novel G-CSF conjugated anionic globular dendrimer: Preparation and biological activity assessment

新型G-CSF共轭阴离子球状树枝状聚合物的制备及生物活性评价

阅读:5
作者:Seyed Shahaboddin Mousavi Motlagh, Mohammad Seyedhamzeh, Reza Ahangari Cohan, Mehdi Shafiee Ardestani, Behrouz Vaziri, Kayhan Azadmanesh, Sahar Saberi, Vahideh Masoumi

Abstract

The most crucial role of granulocyte colony-stimulating factor (G-CSF) in the body is to increase the strength of immune system. In recent years, research on the use of nanoparticles in pharmaceuticals has been considered, most of which have been for drug-loading purposes. In this study, a novel G-CSF conjugated dendrimer was synthesized and characterized using different techniques. In vitro cytotoxicity was assessed on A549 and L929 cells, while abnormal toxicity was studied in mice. In vitro and in vivo biological activities were assessed in NFS60 cells and rats, respectively. In addition, in vivo distribution, plasma half-life, and histopathological effect were studied in rat. The characterization tests confirmed the successful conjugation. There was no difference between G-CSF cytotoxicity before and after conjugation, and no difference with the control group. No mice showed abnormal toxicity. Although in vitro biological activity revealed both conjugated and free G-CSF promote proliferation cells, biological activity decreased significantly after conjugation about one-third of the unconjugated form. Nonetheless, in vivo biological activity of conjugated G-CSF increased by more than 2.5-fold relative to the unconjugated form, totally. Fortunately, no histopathologic adverse effect was observed in vital rat tissues. Also, in vivo distribution of the conjugate was similar to the native protein with an enhanced terminal half-life. Our data revealed that G-CSF conjugated dendrimer could be considered as a candidate to improve the in vivo biological activity of G-CSF. Moreover, multivalent capability of the dendrimer may be used for other new potentials of G-CSF in future perspectives.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。