CDCA8 induced by NF-YA promotes hepatocellular carcinoma progression by regulating the MEK/ERK pathway

NF-YA诱导的CDCA8通过调节MEK/ERK通路促进肝细胞癌进展

阅读:5
作者:Erbao Chen #, Yu He #, Jing Jiang #, Jing Yi, Zhilin Zou, Qiuzi Song, Qingqi Ren, Zewei Lin, Yi Lu, Jikui Liu, Jian Zhang

Background

Hepatocellular carcinoma (HCC) is one of the most lethal malignant tumors. Cell division cycle associated 8 (CDCA8) is an important multifactorial regulator in cancers. However, its up and downstream targets and effects in HCC are still unclear.

Conclusion

Our findings revealed that the expression of CDCA8 alone or in combined with NF-YA contributed to cancer progression, and could serve as novel potential therapeutic targets for HCC patients.

Methods

A comprehensive bioinformatics analysis was performed using The Cancer Genome Atlas dataset (TCGA) to explore novel core oncogenes. We quantified CDCA8 levels in HCC tumors using qRT-PCR. HCC cell's proliferative, migratory, and invasive abilities were detected using a Cell Counting Kit-8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridine (EdU) assay, clone formation, and a Transwell assay. An orthotopic tumor model and tail vein model were constructed to determine the effects of CDCA8 inhibition in vivo. The mechanism underlying CDCA8 was investigated using RNA sequencing. The prognostic value of CDCA8 was assessed with immunohistochemical staining of the tissue microarrays.

Results

CDCA8 was identified as a novel oncogene during HCC development. The high expression of CDCA8 was an independent predictor for worse HCC outcomes both in publicly available datasets and in our cohort. We found that CDCA8 knockdown inhibited HCC cell proliferation, colony formation, and migration by suppressing the MEK/ERK pathway in vitro. Moreover, CDCA8 deficiency significantly inhibited tumorigenesis and metastasis. Next-generation sequencing and laboratory validation showed that CDCA8 silencing inhibited the expression of TPM3, NECAP2, and USP13. Furthermore, NA-YA overexpression upregulated the expression of CDCA8. CDCA8 knockdown could attenuate NF-YA-mediated cell invasion in vitro. The expression of NF-YA alone or in combined with CDCA8 were validated as significant independent risk factors for patient survival.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。