The MC159 protein from the molluscum contagiosum poxvirus inhibits NF-κB activation by interacting with the IκB kinase complex

传染性软疣痘病毒中的 MC159 蛋白通过与 IκB 激酶复合物相互作用来抑制 NF-κB 活化

阅读:6
作者:Crystal M H Randall, Janet A Jokela, Joanna L Shisler

Abstract

Molluscum contagiosum virus (MCV) causes persistent neoplasms in healthy and immunocompromised people. Its ability to persist likely is due to its arsenal of viral immunoevasion proteins. For example, the MCV MC159 protein inhibits TNF-R1-induced NF-κB activation and apoptosis. The MC159 protein is a viral FLIP and, as such, possesses two tandem death effector domains (DEDs). We show in this article that, in human embryonic kidney 293 T cells, the expression of wild-type MC159 or a mutant MC159 protein containing the first DED (MC159 A) inhibited TNF-induced NF-κB, or NF-κB activated by PMA or MyD88 overexpression, whereas a mutant protein lacking the first DED (MC159 B) did not. We hypothesized that the MC159 protein targeted the IκB kinase (IKK) complex to inhibit these diverse signaling events. Indeed, the MC159 protein, but not MC159 B, coimmunoprecipitated with IKKγ. MC159 coimmunoprecipitated with IKKγ when using mouse embryonic fibroblasts that lack either IKKα or IKKβ, suggesting that the MC159 protein interacted directly with IKKγ. MC159-IKKγ coimmunoprecipitations were detected during infection of cells with either MCV isolated from human lesions or with a recombinant MC159-expressing vaccinia virus. MC159 also interacts with TRAF2, a signaling molecule involved in NF-κB activation. However, mutational analysis of MC159 failed to reveal a correlation between MC159-TRAF2 interactions and MC159's inhibitory function. We propose that MC159-IKK interactions, but not MC159-TRAF2 interactions, are responsible for inhibiting NF-κB activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。