Preparation and evaluation of an Arg-Gly-Asp-modified chitosan/hydroxyapatite scaffold for application in bone tissue engineering

精氨酸-甘氨酸-天冬氨酸修饰壳聚糖/羟基磷灰石支架的制备及在骨组织工程中的应用评价

阅读:4
作者:Lin Chen, Baolin Li, Xiao Xiao, Qinggang Meng, Wei Li, Qian Yu, Jiaqi Bi, Yong Cheng, Zhiwei Qu

Abstract

Bone tissue engineering has become a promising method for the repair of bone defects, and the production of a scaffold with high cell affinity and osseointegrative properties is crucial for successful bone substitute. Chitosan (CS)/hydroxyapatite (HA) composite was prepared by in situ compositing combined with lyophilization, and further modified by arginine‑glycine‑aspartic acid (RGD) via physical adsorption. In order to evaluate the cell adhesion rate, viability, morphology, and alkaline phosphatase (ALP) activity, the RGD‑CS/HA scaffold was seeded with bone marrow stromal cells (BMSCs). The osseointegrative properties of the RGD‑CS/HA scaffold were evaluated by in vivo heterotopic ossification and in vivo bone defect repair. After 4 h culture with the RGD‑CS/HA scaffold, the adhesion rate of the BMSCs was 80.7%. After 3 days, BMSCs were fusiform in shape and evenly distributed on the RGD‑CS/HA scaffold. Formation of extracellular matrix and numerous cell‑cell interactions were observed after 48 h of culture, with an ALP content of 0.006 ± 0.0008 U/l/ng. Furthermore, the osseointegrative ability and biomechanical properties of the RGD‑CS/HA scaffold were comparable to that of normal bone tissue. The biocompatibility, cytocompatibility, histocompatibility and osseointegrative properties of the RGD‑CS/HA scaffold support its use in bone tissue engineering applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。