Hyperoxia but not AOX expression mitigates pathological cardiac remodeling in a mouse model of inflammatory cardiomyopathy

高氧而非 AOX 表达可减轻炎症性心肌病小鼠模型中的病理性心脏重塑

阅读:6
作者:Praveen K Dhandapani, Isabel M Begines-Moreno, Gloria Brea-Calvo, Ulrich Gärtner, Thomas G Graeber, Gerardo Javier Sanchez, Rory E Morty, Kai Schönig, Johanna Ten Hoeve, Astrid Wietelmann, Thomas Braun, Howard T Jacobs, Marten Szibor

Abstract

Constitutive expression of the chemokine Mcp1 in mouse cardiomyocytes creates a model of inflammatory cardiomyopathy, with death from heart failure at age 7-8 months. A critical pathogenic role has previously been proposed for induced oxidative stress, involving NADPH oxidase activation. To test this idea, we exposed the mice to elevated oxygen levels. Against expectation, this prevented, rather than accelerated, the ultrastructural and functional signs of heart failure. This result suggests that the immune signaling initiated by Mcp1 leads instead to the inhibition of cellular oxygen usage, for which mitochondrial respiration is an obvious target. To address this hypothesis, we combined the Mcp1 model with xenotopic expression of the alternative oxidase (AOX), which provides a sink for electrons blocked from passage to oxygen via respiratory complexes III and IV. Ubiquitous AOX expression provided only a minor delay to cardiac functional deterioration and did not prevent the induction of markers of cardiac and metabolic remodeling considered a hallmark of the model. Moreover, cardiomyocyte-specific AOX expression resulted in exacerbation of Mcp1-induced heart failure, and failed to rescue a second cardiomyopathy model directly involving loss of cIV. Our findings imply that mitochondrial involvement in the pathology of inflammatory cardiomyopathy is multifaceted and complex.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。