MYC-driven tumorigenesis is inhibited by WRN syndrome gene deficiency

MYC 驱动的肿瘤发生受到 WRN 综合征基因缺陷的抑制

阅读:5
作者:Russell Moser, Masafumi Toyoshima, Kristin Robinson, Kay E Gurley, Heather L Howie, Jerry Davison, Martin Morgan, Christopher J Kemp, Carla Grandori

Abstract

MYC-induced DNA damage is exacerbated in WRN-deficient cells, leading to replication stress and accelerated cellular senescence. To determine whether WRN deficiency impairs MYC-driven tumor development, we used both xenograft and autochthonous tumor models. Conditional silencing of WRN expression in c-MYC overexpressing non-small cell lung cancer xenografts impaired both tumor establishment and tumor growth. This inhibitory effect of WRN knockdown was accompanied by increased DNA damage, decreased proliferation, and tumor necrosis. In the Eμ-Myc mouse model of B-cell lymphoma, a germline mutation in the helicase domain of Wrn (Wrn(Δhel/Δhel)) resulted in a significant delay in emergence of lethal lymphomas, extending tumor-free survival by more than 30%. Analysis of preneoplastic B cells from Eμ-Myc Wrn mutant mice revealed increased DNA damage, elevation of senescence markers, and decreased proliferation in comparison with cells from age-matched Eμ-Myc mice. Immunohistochemical and global gene expression analysis of overt Eμ-Myc Wrn(Δhel/Δhel) lymphomas showed a marked increase in expression of the CDK inhibitor, p16(Ink4a), as well as elevation of TAp63, a known mediator of senescence. Collectively, these studies show that in the context of Myc-associated tumorigenesis, loss of Wrn amplifies the DNA damage response, both in preneoplastic and neoplastic tissue, engaging activation of tumor suppressor pathways. This leads to inhibition of tumor growth and prolonged tumor-free survival. Targeting WRN or its enzymatic function could prove to be an effective strategy in the treatment of MYC-associated cancers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。