The protective effects of etomidate against interleukin-1β (IL-1β)-induced oxidative stress, extracellular matrix alteration and cellular senescence in chondrocytes

依托咪酯对白细胞介素-1β (IL-1β) 诱导的软骨细胞氧化应激、细胞外基质改变和细胞衰老的保护作用

阅读:5
作者:Miaomiao Yin, Yinmei Xu

Abstract

Osteoarthritis (OA) is a common chronic inflammatory disease associated with aging. Etomidate is an intravenous anesthetic with profound antioxidant and anti-inflammatory effects. We speculated that etomidate might exert a beneficial effect on OA. Herein, we explored the effects of etomidate on interleukin-1β (IL-1β)- induced chondrocytes. Our results prove that etomidate ameliorated the IL-1β-induced oxidative stress in C28/12 chondrocytes by decreasing and increasing the reactive oxygen species (ROS) and glutathione peroxidase (GPx) levels, respectively. Etomidate prevented the IL-1β-induced increase in the expressions of matrix metalloproteinase-3 (MMP-3) and matrix metalloproteinase-13 (MMP-13) in C28/I2 chondrocytes at both mRNA and protein levels. It also caused a significant reduction in the percentage of senescence-associated-β-galactosidase (SA-β-Gal)-stained chondrocytes, while inducing elevated telomerase activity in IL-1β-treated C28/I2 chondrocytes. The expression levels of senescence regulators, plasminogen activator inhibitor-1 (PAI-1) and p16, were also inhibited by etomidate in IL-1β-treated C28/I2 chondrocytes. In addition, etomidate caused the activation of Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), along with upregulated expression levels of phosphorylated AMPKα and phosphorylated acetyl-Co A carboxylase (ACC). Moreover, blockage of AMPK using compound C abolished the protective effects of etomidate on IL-1β-challenged C28/I2 chondrocytes. Taken together, these results demonstrate that etomidate protected C28/I2 chondrocytes from IL-1β-induced oxidative stress, ECM degradation, and cellular senescence via activating AMPK signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。