New Tissue-Engineered Vascular Matrix Based on Regenerated Silk Fibroin: in vitro Study

基于再生丝素蛋白的新型组织工程血管基质:体外研究

阅读:7
作者:E S Prokudina, E A Senokosova, L V Antonova, E O Krivkina, E A Velikanova, T N Akentieva, T V Glushkova, V G Matveeva, N A Kochergin

Conclusion

Matrices produced from regenerated SF demonstrated satisfactory results, comparable to those for PHBV/PCL/VEGF and commercial XP flap, and in the case of platelet adhesion and activation, they outperformed these patches. In total, SF can be defined as material having sufficient biological compatibility, which makes it possible to consider a tissue-engineered matrix made from it as promising for implantation into the vascular wall.

Methods

Tissue-engineered matrices were produced by electrospinning. The surface structure, physical and mechanical characteristics, hemocompatibility (erythrocyte hemolysis, aggregation, adhesion and activation of platelets after contact with the material) and matrix properties of vascular patches (adhesion, viability, metabolic activity of EA.hy926 cells on the material) were studied.

Results

The surface of SF-based matrices and PHBV/PCL/VEGF-based tissue engineered patches had a porous and fibrous structure compared to a denser and more uniform XP flap. The physical and mechanical characteristics of SF matrices were close to those of native vessels. Along with this, tissue-engineered patches demonstrated high hemocompatible properties, which do not differ from those for commercial XP flap. Adhesion, viability, and metabolic activity of EA.hy926 endothelial cells also corresponded to the previously developed PHBV/PCL/VEGF matrix and XP flap, which indicates the nontoxicity and biocompatibility of SF matrices.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。