The m6A demethylase fat mass and obesity-associated protein mitigates pyroptosis and inflammation in doxorubicin-induced heart failure via the toll-like receptor 4/NF-κB pathway

m6A 去甲基化酶脂肪质量和肥胖相关蛋白通过 Toll 样受体 4/NF-κB 通路减轻阿霉素诱发的心力衰竭中的细胞焦亡和炎症

阅读:19
作者:Weiling Tu, Xiao Huang, Songtao Liu, Yuliang Zhan, Xinyong Cai, Liang Shao

Background

Doxorubicin (Dox) can induce cardiotoxicity, thereby restricting the utility of this potent drug. Herein, the study ascertained the mechanism of the N6-methyladenosine (m6A) demethylase fat mass and obesity-associated protein (FTO) in pyroptosis and inflammation during Dox-induced heart failure (HF).

Conclusions

FTO alleviated Dox-induced HF by blocking the TLR4/NF-κB pathway.

Methods

Serum samples were collected from HF patients for detection of the expression of FTO and toll-like receptor 4 (TLR4). Dox-treated H9C2 cardiomyocytes were chosen for in vitro HF modeling, followed by measurement of FTO and TLR4 expression. Cardiomyocytes were detected for viability, apoptosis, spatial distribution of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), and the levels of lactic dehydrogenase, inflammatory factors, oxidative stress markers, and pyroptosis-related proteins. The m6A levels of mRNA were examined. RNA immunoprecipitation (RIP) and mRNA stability measurement were used to determine mRNA and protein expression, and RNA m6A dot blot and methylated-RIP assay were performed to detect m6A methylation levels. The expression of p-NF-κB p65 and p-IκB-α was measured by western blotting.

Results

In the serum of HF patients, FTO was elevated while TLR4 was decreased. Dox treatment reduced FTO expression and increased m6A methylation levels and TLR4 expression in H9C2 cells. Overexpression of FTO and knockdown of TLR4 reduced apoptosis, cytotoxicity, inflammation, pyroptosis, oxidative stress, NLRP3 co-localization, and fluorescence intensity in Dox-induced H9C2 cells. Mechanistically, FTO resulted in reduced binding activity of YTHDF1 to TLR4 mRNA via m6A demethylation of TLR4, thus declining TLR4, p-NF-κB p65, and p-IκB-α expression. TLR4 knockdown counteracted the effects of FTO knockdown on Dox-induced H9C2 cells. Conclusions: FTO alleviated Dox-induced HF by blocking the TLR4/NF-κB pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。