Phospho-Aspirin (MDC-22) inhibits pancreatic cancer growth in patient-derived tumor xenografts and KPC mice by targeting EGFR: Enhanced efficacy in combination with irinotecan

磷酸阿司匹林 (MDC-22) 通过靶向 EGFR 抑制患者来源的肿瘤异种移植和 KPC 小鼠中的胰腺癌生长:与伊立替康联合使用可增强疗效

阅读:5
作者:Cecilia Rodriguez Lanzi, Ran Wei, Dingyuan Luo, Gerardo G Mackenzie

Abstract

Novel therapeutic strategies are needed in the fight against pancreatic cancer. We have previously documented the chemopreventive effect of MDC-22 in preclinical models of pancreatic cancer. In the present work, we examined the therapeutic effects of MDC-22 in patient-derived tumor xenografts (PDTXs) and in LSL-KrasG12D/+, LSL-Trp53R172H/+, Pdx1-Cre (KPC) genetically engineered mice, two complementary and clinically relevant animal models of pancreatic cancer. In addition, we evaluated whether MDC-22 could synergize with current chemotherapeutic drugs used in the clinic. MDC-22 reduced the growth of various human pancreatic cancer cell lines in a concentration-dependent manner. In vivo, MDC-22 strongly reduced patient-derived pancreatic tumor xenograft growth by 50%, and extended survival of LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx1-Cre (KPC) mice by over a month (5.3 months versus 7.0 months). In both models, MDC-22 inhibited EGFR activation and its downstream signals, including ERK and FAK phosphorylation. In human pancreatic cancer cell lines, MDC-22 enhanced the growth inhibitory effect of irinotecan, and to a lesser degree those of gemcitabine and nab-paclitaxel. Normal human pancreatic epithelial cells were more resistant to the cytotoxic effects of, both, MDC-22 alone or in combination with irinotecan, indicating selectivity. Furthermore, MDC-22 enhanced irinotecan's effect on cell migration, in part, by inhibiting EGFR/FAK signaling. Collectively, our results indicate that MDC-22 is an effective anticancer drug in preclinical models of pancreatic cancer, and suggest that MDC-22 plus irinotecan as drug combination strategy for pancreatic cancer treatment, which warrants further evaluation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。