Lack of multidrug resistance-associated protein 4 (Mrp4) alters the kinetics of acetaminophen toxicity

缺乏多药耐药相关蛋白 4 (Mrp4) 会改变对乙酰氨基酚毒性的动力学

阅读:4
作者:Ajay C Donepudi, Michael J Goedken, John D Schuetz, José E Manautou

Abstract

Acetaminophen (APAP) overdose is the most frequent cause of drug-induced liver injury in humans and a common chemical model to investigate genetic determinants of susceptibility to drug-induced liver injury (DILI). Previous studies performed in our laboratory identified the efflux transporter multidrug resistance-associated protein 4 (Mrp4) as an inducible gene in the liver following toxic APAP exposure in both humans and rodents. In mice, blockade of hepatic Mrp4 induction following APAP administration increases susceptibility towards APAP hepatotoxicity. Collectively, these findings suggest that Mrp4 plays an important role in tolerance to APAP-induced liver injury. To further study the role of Mrp4 in APAP-induced hepatotoxicity, we treated 10-12 weeks old male wild type (WT, C57BL/6J) and Mrp4 knockout (Mrp4-/-) mice with APAP (400 mg/Kg in saline, i.p.) or vehicle. Liver injury endpoints and hepatic gene expression were analyzed at 12, 24 and 48 h post-APAP injections. Unexpectedly, the kinetics of histologically measured liver damage and plasma ALT revealed that Mrp4-/ mice had decreased ALT levels and hepatic necrosis compared to WT mice only at 12 h. Notably, hepatic non-protein sulfhydryl (NPSH) levels were increased in the APAP treated Mrp4-/- mice at intervals less than 24 h, consistent with the capability of Mrp4 to export glutathione. Further gene expression analysis revealed that hepatic drug metabolism genes were downregulated in Mrp4-/- mice at earlier time points post-APAP administration. However, despite significant decreases in endpoints of liver injury detected at an early time point after APAP treatment, these changes were not sustained at later time points as Mrp4-/- mice ultimately had hepatic toxicity at levels comparable to WT mice. In conclusion, our data indicate that lack of Mrp4 by itself in mice does not alter susceptibility to APAP toxicity.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。