Lipocalin-2 silencing suppresses inflammation and oxidative stress of acute respiratory distress syndrome by ferroptosis via inhibition of MAPK/ERK pathway in neonatal mice

脂质运载蛋白-2沉默通过抑制新生小鼠的MAPK / ERK通路抑制铁死亡引起的急性呼吸窘迫综合征的炎症和氧化应激

阅读:4
作者:Xiaodong Wang, Chunhua Zhang, Na Zou, Qinghua Chen, Chaojun Wang, Xu Zhou, Li Luo, Haibin Qi, Junhua Li, Zhiyan Liu, Jinghong Yi, Jing Li, Wei Liu

Abstract

Neonatal acute respiratory distress syndrome (ARDS) has high morbidity and mortality rates worldwide, but there is a lack of pharmacologic treatment and clinical targeted therapies. In this study, we aimed to explore the effects of Lipocalin-2 (LCN2) on ferroptosis-mediated inflammation and oxidative stress in neonatal ARDS and the potential mechanism. In this study, we established an in vivo ARDS mouse model and an in vitro ARDS cell model by LPS (Lipopolysaccharide) stimulation. Lung tissue injury was evaluated by wet/dry ratios and histopathological examination. LCN2 expression was detected by qRT-PCR and Western blot. Inflammatory factors, oxidative stress and apoptosis were also detected. Ferroptosis was identified by detection of Fe2+ level and ferroptosis-associated protein expressions. Mitogen-activated protein kinases (MAPK)/extracellular signal-regulated kinase (ERK) pathway signaling was examined by Western blot analysis. The data revealed that LCN2 expression was significantly upregulated in neonatal mice with ARDS. Interference with LCN2 protected LPS-induced lung in neonatal mouse by reducing the radio of wet/dry and alleviating pathological damages. In addition, LCN2 silencing repressed LPS-induced inflammation, oxidative stress in vivo and in vitro, as well as apoptosis. Meanwhile, decreased level of Fe2+ and transferrin while increased levels of ferritin heavy chain 1 (FTH1) and glutathione peroxidase 4 (GPX4) were observed. The expression MAPK/ERK pathway was inhibited by depletion of LCN2. The present results suggest that LCN2 knockdown protected LPS-induced ARDS model via inhibition of ferroptosis-related inflammation and oxidative stress by inhibiting the MAPK/ERK pathway, thereby presenting a novel target for the treatment of ARDS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。