Extrafibrillarly Demineralized Dentin Matrix for Bone Regeneration

用于骨再生的纤维外脱矿牙本质基质

阅读:3
作者:Xiaoyi Wu, Wenan Peng, Gufeng Liu, Shilei Wang, Bo Duan, Jian Yu, Hongye Yang, Cui Huang

Abstract

Dentin is a natural extracellular matrix, but its availability in bone grafting and tissue engineering applications is underestimated due to a lack of proper treatment. In this study, the concept of extrafibrillar demineralization is introduced into the construction of dentin-derived biomaterials for bone regeneration for the first time. Calcium chelating agents with large molecular weights are used to selectively remove the extrafibrillar apatite minerals without disturbing the intrafibrillar minerals within dentin collagen, resulting in the formation of an extrafibrillarly demineralized dentin matrix (EDM). EDM with distinctive nanotopography and bone-like mechanical properties is found to significantly promote cell adhesion, migration, and osteogenic differentiation in vitro while enhancing in vivo bone healing of rat calvarial defects. The outstanding osteogenic performance of EDM is further confirmed to be related to the activation of the focal adhesion-cytoskeleton-nucleus mechanotransduction axis. Overall, this study shows that extrafibrillar demineralization of dentin has great potential to produce hierarchical collagen-based scaffolds for bone regeneration, and this facile top-down fabrication method brings about new ideas for the biomedical application of naturally derived bioactive materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。