Selective up-regulation of human selenoproteins in response to oxidative stress

人类硒蛋白在氧化应激反应中的选择性上调

阅读:4
作者:Touat-Hamici Zahia, Legrain Yona, Bulteau Anne-Laure, Chavatte Laurent

Abstract

Selenocysteinse is inserted into selenoproteins via the translational recoding of a UGA codon, normally used as a stop signal. This process depends on the nature of the SECIS element located in the 3'UTR of selenoprotein mRNAs, selenium bioavailability, and possibly exogenous stimuli. To further understand the function and regulation of selenoproteins in antioxidant defense and redox homeostasis, we have investigated how oxidative stress influences selenoprotein expression as a function of different selenium concentrations. We found that selenium supplementation of the culture media, which resulted in a hierarchical upregulation of selenoproteins, protected HEK293 cells from ROS formation. Furthermore, in response to oxidative stress, we identified a selective upregulation of several selenoproteins involved in antioxidant defense (Gpx1, Gpx4, TR1, SelS, SelK and Sps2). Interestingly, the response was more efficient when selenium was limiting. While a modest change in mRNA levels was noted, we identified a novel translational control mechanism stimulated by oxidative stress that is characterized by upregulation of UGA-selenocysteine recoding efficiency and relocalization of SBP2, EFsec and L30 recoding factors from cytoplasm to nucleus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。