Modification of Extracellular Matrix Enhances Oncolytic Adenovirus Immunotherapy in Glioblastoma

细胞外基质的修饰增强溶瘤腺病毒免疫疗法在胶质母细胞瘤中的疗效

阅读:1
作者:Juri Kiyokawa ,Yoichiro Kawamura ,Shanawaz M Ghouse ,Simge Acar ,Erinç Barçın ,Jordi Martínez-Quintanilla ,Robert L Martuza ,Ramon Alemany ,Samuel D Rabkin ,Khalid Shah ,Hiroaki Wakimoto

Abstract

Purpose: Extracellular matrix (ECM) component hyaluronan (HA) facilitates malignant phenotypes of glioblastoma (GBM), however, whether HA impacts response to GBM immunotherapies is not known. Herein, we investigated whether degradation of HA enhances oncolytic virus immunotherapy for GBM. Experimental design: Presence of HA was examined in patient and murine GBM. Hyaluronidase-expressing oncolytic adenovirus, ICOVIR17, and its parental virus, ICOVIR15, without transgene, were tested to determine if they increased animal survival and modulated the immune tumor microenvironment (TME) in orthotopic GBM. HA regulation of NF-κB signaling was examined in virus-infected murine macrophages. We combined ICOVIR17 with PD-1 checkpoint blockade and assessed efficacy and determined mechanistic contributions of tumor-infiltrating myeloid and T cells. Results: Treatment of murine orthotopic GBM with ICOVIR17 increased tumor-infiltrating CD8+ T cells and macrophages, and upregulated PD-L1 on GBM cells and macrophages, leading to prolonged animal survival, compared with control virus ICOVIR15. High molecular weight HA inhibits adenovirus-induced NF-κB signaling in macrophages in vitro, linking HA degradation to macrophage activation. Combining ICOVIR17 with anti-PD-1 antibody further extended the survival of GBM-bearing mice, achieving long-term remission in some animals. Mechanistically, CD4+ T cells, CD8+ T cells, and macrophages all contributed to the combination therapy that induced tumor-associated proinflammatory macrophages and tumor-specific T-cell cytotoxicity locally and systemically. Conclusions: Our studies are the first to show that immune modulatory ICOVIR17 has a dual role of mediating degradation of HA within GBM ECM and subsequently modifying the immune landscape of the TME, and offers a mechanistic combination immunotherapy with PD-L1/PD-1 blockade that remodels innate and adaptive immune cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。