Effects of Human Mesenchymal Stem Cells Transduced with Superoxide Dismutase on Imiquimod-Induced Psoriasis-Like Skin Inflammation in Mice

转导超氧化物歧化酶的人间充质干细胞对小鼠咪喹莫特诱发的银屑病样皮肤炎症的影响

阅读:4
作者:Shyam Kishor Sah, Kyung Ho Park, Chae-Ok Yun, Kyung-Sun Kang, Tae-Yoon Kim

Aims

The immunomodulatory and anti-inflammatory properties of mesenchymal stem cells (MSCs) have been proposed in several autoimmune diseases and successfully tested in animal models, but their contribution to psoriasis and underlying pathways remains elusive. Likewise, an increased or prolonged presence of reactive oxygen species and aberrant antioxidant systems in skin are known to contribute to the development of psoriasis and therefore effective antioxidant therapy is highly required. We explored the feasibility of using extracellular superoxide dismutase (SOD3)-transduced allogeneic MSCs as a novel therapeutic approach in a mouse model of imiquimod (IMQ)-induced psoriasis-like inflammation and investigated the poorly understood underlying mechanism. In addition, the chronicity and late-phase response of inflammation were evaluated during continued activation of antigen receptors by applying a booster dose of IMQ.

Conclusion

Our data offer a novel therapeutic approach to chronic inflammatory skin diseases such as psoriasis by leveraging immunomodulatory effects of MSCs as well as SOD3 expression.

Results

Subcutaneous injection of allogeneic SOD3-transduced MSCs significantly prevented psoriasis development in our IMQ-induced mouse model, likely through a suppression of proliferation and infiltration of various effector cells into skin with a concomitant modulated cytokine and chemokine expression and inhibition of signaling pathways such as toll-like receptor-7, nuclear factor-kappa B, p38 mitogen-activated kinase, and Janus kinase-signal transducer and activator of transcription, as well as adenosine receptor activation. Innovation and

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。