MNRR1 is a driver of ovarian cancer progression

MNRR1 是卵巢癌进展的驱动因素

阅读:6
作者:Hussein Chehade, Neeraja Purandare, Alexandra Fox, Nicholas Adzibolosu, Shawn Jayee, Aryan Singh, Roslyn Tedja, Radhika Gogoi, Siddhesh Aras, Lawrence I Grossman, Gil Mor, Ayesha B Alvero

Abstract

Cancer progression requires the acquisition of mechanisms that support proliferative potential and metastatic capacity. MNRR1 (also CHCHD2, PARK22, AAG10) is a bi-organellar protein that in the mitochondria can bind to Bcl-xL to enhance its anti-apoptotic function, or to respiratory chain complex IV (COX IV) to increase mitochondrial respiration. In the nucleus, it can act as a transcription factor and promote the expression of genes involved in mitochondrial biogenesis, migration, and cellular stress response. Given that MNRR1 can regulate both apoptosis and mitochondrial respiration, as well as migration, we hypothesize that it can modulate metastatic spread. Using ovarian cancer models, we show heterogeneous protein expression levels of MNRR1 across samples tested and cell-dependent control of its stability and binding partners. In addition to its anti-apoptotic and bioenergetic functions, MNRR1 is both necessary and sufficient for a focal adhesion and ECM repertoire that can support spheroid formation. Its ectopic expression is sufficient to induce the adhesive glycoprotein THBS4 and the type 1 collagen, COL1A1. Conversely, its deletion leads to significant downregulation of these genes. Furthermore, loss of MNRR1 leads to delay in tumor growth, curtailed carcinomatosis, and improved survival in a syngeneic ovarian cancer mouse model. These results suggest targeting MNRR1 may improve survival in ovarian cancer patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。