Icariin ameliorates dexamethasone‑induced bone deterioration in an experimental mouse model via activation of microRNA‑186 inhibition of cathepsin K

淫羊藿苷通过激活 microRNA-186 对蛋白酶 K 的抑制作用,改善实验小鼠模型中地塞米松诱发的骨质恶化

阅读:7
作者:Yongsheng Ma, Hao Yang, Junqing Huang

Abstract

The present study aimed to investigate bone deterioration in glucocorticoid‑induced osteoporosis (GIOP) mice, and the anti‑osteoporosis effect and underlying molecular mechanism of icariin. Dexamethasone (DSM) treatment was demonstrated to facilitate the induction of hypercalciuria in GIOP mice. Icariin treatment reversed the dexamethasone (DXM)‑induced disequilibrium of calcium homeostasis and bone resorption, and increased serum alkaline phosphatase, tartrate resistant acid phosphatase, osteocalcin and deoxypyridinoline. Haematoxylin and eosin staining revealed an increase in disconnections and separation in the trabecular bone network of the tibial proximal metaphysis, in the GIOP group. Icariin treatment reversed the DXM‑induced trabecular deleterious effects, and stimulated bone remodeling in GIOP mice. Furthermore, the results demonstrated that the mRNA and protein expression of cathepsin K were significantly increased in GIOP mice, compared with the control group. Icariin treatment may suppress the expression of cathepsin K in the tibia of GIOP mice. The levels of microRNA (miR)‑186 were markedly reduced in the tibia of GIOP mice compared with control group; however, this was inhibited by icariin treatment. Bioinformatics analysis demonstrated that miR‑186 regulates cathepsin K via binding to the upstream 3'‑untranslated region. Furthermore, transfection with miR‑186 mimics resulted in inhibition of cathepsin K expression, whereas miR‑186 inhibitors facilitated cathepsin K expression in osteoclasts. In conclusion, the present study demonstrated the protective effects of icariin against bone deteriorations in the experimental GIOP mice, and the underlying mechanism was mediated, at least partially, via activation of miR‑186‑mediated suppression of cathepsin K. These results provide evidence to support the use of icariin as a therapeutic approach in the management of glucocorticoid‑induced bone loss, and the disequilibrium of calcium homeostasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。