ZeXieYin formula alleviates atherosclerosis by inhibiting the MAPK/NF-κB signaling pathway in APOE-/- mice to attenuate vascular inflammation and increase plaque stability

泽泻饮配方通过抑制 APOE-/- 小鼠的 MAPK/NF-κB 信号通路来减轻血管炎症并增加斑块稳定性,从而减轻动脉粥样硬化

阅读:6
作者:Rumin Huang, Yan Sun, Ruiyi Liu, Boran Zhu, Hailou Zhang, Haoxin Wu

Aim of the study

Our study mainly focused on the therapeutic effects of ZXYF on high-fat diet (HFD)-induced vascular inflammation and vulnerable plaques (VP) in mice and explored its underlying mechanism.

Conclusion

Our results suggested that ZXYF could reduce inflammation and increase plaque stability by inhibiting the MAPK/NF-κB signaling pathway, which provided a theoretical basis for clinical application and subsequent research.

Results

In this study, APOE-/- mice were fed high-fat diet for 8 weeks. The results of oil-red and HE staining indicated a significant increase in the aortic plaque area of the mice, which exhibited a typical VP phenotype. ZXYF and ATO significantly improved AS plaques and prevented plaque rupture. HFD exacerbated vascular inflammation, stimulated macrophage conversion to M1-type through the MAPK/NF-κB signaling pathway, and released pro-inflammatory factors such as interleukin (IL)-1β, IL-1α, and IL-6. These factors activated NLRP3 inflammasome, leading to cellular death. However, ZXYF could reverse this trend and promote the conversion of macrophages to the anti-inflammatory M2 type. The anti-inflammatory effect of ATO was not significant. Moreover, HFD promoted the release of MMP-2 and MMP-9 from macrophages, which degraded plaque collagen, and induced a decrease in plaque SMC content, resulting in a thinning of the plaque fibrous cap. In contrast, ZXYF inhibited the decomposition of plaque collagen and increased the content of plaque smooth muscle cells (SMC) by reducing macrophage secretion of MMPs, thereby stabilizing plaques. Although ATO could reverse the decrease in plaque collagen and SMC content, its effect on MMPs was not significant. Finally, we calculated the vulnerability index to assess the overall risk of the plaque vulnerability phenotype. In line with these findings, ZXYF and ATO were able to effectively reverse the increase in the vulnerability index caused by HFD and lower the risk of adverse cardiovascular events.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。