TWEAK/Fn14 promotes oxidative stress through AMPK/PGC‑1α/MnSOD signaling pathway in endothelial cells

TWEAK/Fn14通过AMPK/PGC-1α/MnSOD信号通路促进内皮细胞氧化应激

阅读:8
作者:Hengdao Liu, Hui Peng, Hong Xiang, Lingli Guo, Ruifang Chen, Shaoli Zhao, Wei Chen, Pan Chen, Hongwei Lu, Shuhua Chen

Abstract

Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) contributes to dysfunction of endothelial cells via its receptor, Fn14. However, its role in the production of reactive oxygen species (ROS), particularly mitochondrial ROS (mtROS) and the subsequent decrease in nitric oxide (NO) in endothelial cells remains unclear. In this study, the effect of TWEAK/Fn14 on generation of ROS, mtROS and NO in endothelial cells and its potential mechanism was investigated. Human umbilical vein endothelial cells (HUVECs) were treated with TWEAK with Fn14 small interfering (si)RNA or negative control RNA. It was demonstrated that TWEAK induced the production of ROS and mtROS in HUVECs, which were detected by fluorescent microscope, and flow cytometry. In addition, TWEAK decreased the generation of NO as indicated using the Nitric Oxide Assay kit. Furthermore, TWEAK aggravated mtDNA damage as measured by quantitative polymerase chain reaction analysis. Inhibition of Fn14 by Fn14 siRNA decreased TWEAK‑induced ROS and mtROS production, as well as mtDNA damage, while it increased the production of NO in endothelial cells. In addition, TWEAK inhibited the expression of active AMP‑activated protein kinase (AMPK) and its downstream protein peroxisome proliferator‑activated receptor‑γ coactivator-1α (PGC‑1α) and manganese superoxide dismutase (MnSOD). Notably, Fn14 siRNA enhanced the expression of the aforementioned proteins. Taken together, TWEAK/Fn14 contributes to endothelial dysfunction through modulation of ROS and mtROS. In addition, the underlying mechanism is implicated in the AMPK/PGC‑1α/MnSOD signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。