Nuclear Fructose-1,6-Bisphosphate Inhibits Tumor Growth and Sensitizes Chemotherapy by Targeting HMGB1

核果糖-1,6-双磷酸盐通过靶向 HMGB1 抑制肿瘤生长并增强化疗敏感性

阅读:4
作者:Yeyi Li, Yuan Fu, Yan Zhang, Bilian Duan, Yanli Zhao, Man Shang, Ying Cheng, Kai Zhang, Qiujing Yu, Ting Wang

Abstract

Metabolites are important for cell fate determination. Fructose-1,6-bisphosphate (F1,6P) is the rate-limiting product in glycolysis and the rate-limiting substrate in gluconeogenesis. Here, it is discovered that the nuclear-accumulated F1,6P impairs cancer cell viability by directly binding to high mobility group box 1 (HMGB1), the most abundant non-histone chromosome structural protein with paradoxical roles in tumor development. F1,6P disrupts the association between the HMGB1 A-box and C-tail by targeting K43/K44 residues, inhibits HMGB1 oligomerization, and stabilizes P53 protein by increasing P53-HMGB1 interaction. Moreover, F1,6P lowers the affinity of HMGB1 for DNA and DNA adducts, which sensitizes cancer cells to chemotherapeutic drug(s)-induced DNA replication stress and DNA damage. Concordantly, F1,6P resensitizes cancer cells with chemotherapy resistance, impairs tumor growth and enhances chemosensitivity in mice, and impedes the growth of human tumor organoids. These findings reveal a novel role for nuclear-accumulated F1,6P and underscore the potential utility of F1,6P as a drug for cancer therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。