An unusual microbiome characterises a spatially-aggressive crustose alga rapidly overgrowing shallow Caribbean reefs

一种不寻常的微生物群落表征了一种空间攻击性壳状藻类,这种藻类迅速在加勒比浅水珊瑚礁中蔓延

阅读:3
作者:Bryan Wilson, Chen-Ming Fan, Peter J Edmunds

Abstract

Several species of crustose coralline algae (CCA) and their associated microbial biofilms play important roles in determining the settlement location of scleractinian corals on tropical reefs. In recent decades, peyssonnelid algal crusts (PAC) have become spatial dominants across large areas of shallow Caribbean reefs, where they appear to deter the recruitment of scleractinians. Our genetic investigations of PAC in St. John, US Virgin Islands, amplifying the large-subunit ribosomal RNA and psbA protein D1 marker genes, revealed them to be identical to Ramicrusta textilis previously reported overgrowing corals in Jamaica. Specimens of PAC sampled from the Honduras were likewise identical, confirming that this crustose alga inhabits the easternmost and westernmost regions of the Caribbean. We also analysed 16S rDNA tag amplicon libraries of the biofilms associated with PAC and sympatric CCA, which is favoured for coral settlement. Our results show that the microbial communities on PAC (vs. CCA) are characterized by significantly lower numbers of the epibiotic bacterial genus Pseudoalteromonas, which facilitates the recruitment and settlement of marine invertebrates. From these data, we infer that PAC are therefore unlikely to be attractive as settlement sites for coral larvae. Given the significant ecological change anticipated on these reefs due to increasing cover of PAC, there is an urgent need to further investigate competitive interactions between PAC and scleractinian corals, and elucidate the role of PAC and their associated microbiomes in accentuating phase shifts from coral to algae on tropical reefs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。