A synthetic resveratrol analog termed Q205 reactivates latent HIV-1 through activation of P-TEFb

一种名为 Q205 的合成白藜芦醇类似物通过激活 P-TEFb 重新激活潜伏的 HIV-1

阅读:5
作者:Taizhen Liang, Ziyao Wu, Yibin Li, Chao Li, Kangni Zhao, Xinman Qiao, Heng Duan, Xuanxuan Zhang, Shuwen Liu, Baomin Xi, Lin Li

Abstract

The persistence of HIV-1 latent reservoir creates the major obstacle toward an HIV-1 cure. The "shock and kill" strategy aims to reverse HIV-1 proviral latency using latency-reversing agents (LRAs), thus boosting immune recognition and clearance to residual infected cells. Unfortunately, to date, none of these tested LRA candidates has been demonstrated effectiveness and/or safety in reactivation HIV-1 latency. The discovery and development of effective, safe and affordable LRA candidates are urgently needed for creating an HIV-1 functional cure. Here, we designed and synthesized a series of small-molecule phenoxyacetic acid derivatives based on the resveratrol scaffold and found one of them, named 5, 7-dimethoxy-2-(5-(methoxymethyl) furan-2-yl) quinazolin-4(3H)-one (Q205), effectively reactivated latent HIV-1 in latent HIV-1-infected cells without a corresponding increase in induction of potentially damaging cytokines. The molecular mechanism of Q205 is shown to increase the phosphorylation of the CDK9 T-loop at position Thr186, dissociate positive transcription elongation factor b (P-TEFb) from BRD4, and promote the Tat-mediated HIV-1 transcription and RNA polymerase II (RNAPII) C-terminal domain (CTD) on Ser (CTD-Ser2P) to bind to the HIV-1 promoter. This study provides a unique insight into resveratrol modified derivatives as promising leads for preclinical LRAs, which in turn may help toward inhibitor design and chemical optimization for improving HIV-1 shock-and kill-based efforts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。