Carnitine palmitoyltransferase 2 knockout potentiates palmitate-induced insulin resistance in C2C12 myotubes

肉碱棕榈酰转移酶 2 敲除增强 C2C12 肌管中棕榈酸诱导的胰岛素抵抗

阅读:4
作者:Michael L Blackburn, Kikumi D Ono-Moore, Hany F Sobhi, Sean H Adams

Abstract

Saturated fatty acids (SFAs) are implicated in muscle inflammation/cell stress and insulin resistance, but the catalog of factors involved is incomplete. SFA derivatives that accumulate with mismatched FA availability and FA oxidation (FAO) are likely involved, and evidence has emerged that select acylcarnitines should be considered. To understand if excessive long-chain acylcarnitine accumulation and limited FAO associate with lipotoxicity, carnitine palmitoyltransferase 2 knockout C2C12 cells were generated (CPT2 KO). CPT2 KO was confirmed by Western blot, increased palmitoylcarnitine accumulation, and loss of FAO capacity. There was no effect of CPT2 KO on palmitic acid (PA) concentration-dependent increases in media IL-6 or adenylate kinase. PA at 200 and 500 µM did not trigger cell stress responses (phospho-Erk, -JNK, or -p38) above that of vehicle in WT or CPT2 KO cells. In contrast, loss of CPT2 exacerbated PA-induced insulin resistance (acute phospho-Akt; 10 or 100 nM insulin) by as much as ~50-96% compared with WT. Growing cells in carnitine-free media abolished differences between WT and CPT2 KO, but this did not fully rescue PA-induced insulin resistance. The results suggest that PA-induced insulin resistance stems in part from palmitoylcarnitine accumulation, further supporting the hypothesis that select acylcarnitines participate in cell signaling and, when in excess, can compromise cell function. Since carnitine-free conditions could not fully rescue insulin signaling, and CPT2 KO did not alter cell stress responses, the majority of PA-induced "lipotoxicity" in C2C12 myotubes cannot be attributed to palmitoylcarnitine alone.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。