Schwann cells expressing nociceptive channel TRPA1 orchestrate ethanol-evoked neuropathic pain in mice

表达伤害性通道 TRPA1 的雪旺细胞在小鼠中调控乙醇诱发的神经性疼痛

阅读:5
作者:Francesco De Logu, Simone Li Puma, Lorenzo Landini, Francesca Portelli, Alessandro Innocenti, Daniel Souza Monteiro de Araujo, Malvin N Janal, Riccardo Patacchini, Nigel W Bunnett, Pierangelo Geppetti, Romina Nassini

Abstract

Excessive alcohol consumption is associated with spontaneous burning pain, hyperalgesia, and allodynia. Although acetaldehyde has been implicated in the painful alcoholic neuropathy, the mechanism by which the ethanol metabolite causes pain symptoms is unknown. Acute ethanol ingestion caused delayed mechanical allodynia in mice. Inhibition of alcohol dehydrogenase (ADH) or deletion of transient receptor potential ankyrin 1 (TRPA1), a sensor for oxidative and carbonyl stress, prevented allodynia. Acetaldehyde generated by ADH in both liver and Schwann cells surrounding nociceptors was required for TRPA1-induced mechanical allodynia. Plp1-Cre Trpa1fl/fl mice with a tamoxifen-inducible specific deletion of TRPA1 in Schwann cells revealed that channel activation by acetaldehyde in these cells initiates a NADPH oxidase-1-dependent (NOX1-dependent) production of hydrogen peroxide (H2O2) and 4-hydroxynonenal (4-HNE), which sustains allodynia by paracrine targeting of nociceptor TRPA1. Chronic ethanol ingestion caused prolonged mechanical allodynia and loss of intraepidermal small nerve fibers in WT mice. While Trpa1-/- or Plp1-Cre Trpa1fl/fl mice did not develop mechanical allodynia, they did not show any protection from the small-fiber neuropathy. Human Schwann cells express ADH/TRPA1/NOX1 and recapitulate the proalgesic functions of mouse Schwann cells. TRPA1 antagonists might attenuate some symptoms of alcohol-related pain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。