Macrophage migration inhibitory factor promotes cardiac fibroblast proliferation through the Src kinase signaling pathway

巨噬细胞移动抑制因子通过Src激酶信号通路促进心脏成纤维细胞增殖

阅读:7
作者:Yu-Mei Xue, Chun-Yu Deng, Wei Wei, Fang-Zhou Liu, Hui Yang, Yang Liu, Xin Li, Zhaoyu Wang, Su-Juan Kuang, Shu-Lin Wu, Fang Rao

Abstract

Atrial fibrosis is the fundamental characteristic of the structural pathology associated with atrial fibrillation (AF). Inflammation can contribute to atrial fibrosis, engendering AF. The present study aimed to investigate the role of macrophage migration inhibitory factor (MIF), a pleiotropic cytokine, in the regulation of proliferation and function of cardiac fibroblasts (CFs). Biochemical assays were performed to examine the expression of extracellular matrix (ECM) in human atrial tissues, and the proliferation and regulation of ECM induced by MIF in CFs. The expression of ECM, including collage type 3, α1 (Col‑3A1), matrix metalloproteinase (MMP)‑2/-9 and transforming growth factor (TGF)‑β was higher in patients with permanent AF, compared with patients in sinus rhythm (SR), and the expression levels of MIF were also increased in AF. Treatment of CFs with mouse recombinant MIF (rMIF; 40 nM) for 48 h was found to promote the proliferation of CFs. The MIF‑induced CF proliferation was completely inhibited by tyrosine kinase inhibitor‑PP1. rMIF treatment also stimulated the activation of Src kinase in CFs. In addition, MIF treatment upregulated the expression levels of fibrosis‑related proteins, Col‑1, Col‑3, MMP‑2/-9 and TGF‑β, in the CFs. These results suggested that MIF was involved in the structural remodeling that accompanies AF, possibly by promoting the proliferation of CFs and increasing the expression of ECM. These data implicate inflammation as a potential driver of CF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。