The effects of oxyresveratrol abrogates inflammation and oxidative stress in rat model of spinal cord injury

氧化白藜芦醇对大鼠脊髓损伤模型炎症和氧化应激的消除作用

阅读:5
作者:Hongmei Du #, Lili Ma #, Guangdong Chen, Shan Li

Abstract

Oxyresveratrol and its glycoside are important natural active materials. As an effective tyrosine kinase inhibitor, oxyresveratrol may prevent herpes virus infection, inflammation and oxidative stress, as well as protect nerves. In addition, it is known to inhibit cell apoptosis following cerebral ischemia. In recent years, oxyresveratrol and its glycoside have been widely investigated, and their useful biological activities have been explored, indicating that they may be worthy of further comprehensive research. The aim of the present study was to evaluate the photoprotective effects of oxyresveratrol and its ability to abrogate inflammation and oxidative stress in a rat model of spinal cord injury (SCI). The authors identified that oxyresveratrol significantly reversed the SCI‑induced inhibition of Basso, Beattie, and Bresnahan scores, inhibited the SCI‑mediated increase in spinal cord water content, significantly suppressed SCI‑induced nuclear factor‑κB/p65, tumor necrosis factor‑α, interleukin (IL)‑1β and IL‑6 activities and reversed the malondialdehyde, superoxide dismutase, glutathione (GSH) and GSH peroxidase activities in SCI rats. SCI‑induced granulocyte‑macrophage colony‑stimulating factor (GM‑CSF), inducible nitric oxide synthase (iNOS) and cyclo‑oxygenase‑2 (COX‑2) protein expression was significantly suppressed by oxyresveratrol, and SCI‑mediated inhibition of nuclear factor (erythroid‑derived 2)‑like 2 (Nrf2) protein expression was significantly increased by oxyresveratrol. In conclusion, these results suggest that the effects of oxyresveratrol restores SCI, and abrogates inflammation and oxidative stress in rat model of SCI via the GM‑CSF, iNOS, COX‑2 and Nrf2 signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。