Zinc-α2-glycoprotein relieved seizure-Induced neuronal glucose uptake impairment via insulin-like growth factor 1 receptor-regulated glucose transporter 3 expression

锌-α2-糖蛋白通过胰岛素样生长因子 1 受体调节葡萄糖转运蛋白 3 表达缓解癫痫发作引起的神经元葡萄糖摄取障碍

阅读:5
作者:Wuxue Peng, Xi Liu, Changhong Tan, Wen Zhou, Jin Jiang, Xuan Zhou, Juncong Du, Lijuan Mo, Lifen Chen

Abstract

Glucose hypometabolism is observed in epilepsy and promotes epileptogenesis. Glucose hypometabolism in epilepsy may be attributed to decreased neuronal glucose uptake, but its molecular mechanism remains unclear. Zinc-α2-glycoprotein (ZAG) is related to glucose metabolism and is reported to suppress seizures. The anti-epileptic effect of ZAG may be attributed to its regulation of neuronal glucose metabolism. This study explored the effect of ZAG on neuronal glucose uptake and its molecular mechanism via insulin-like growth factor 1 receptor (IGF1R)-regulated glucose transporter 3 (GLUT-3) expression. The ZAG level was modulated by lentivirus in primary culture neurons. Neuronal seizure models were induced by Mg2+ -free artificial cerebrospinal fluid. We assessed neuronal glucose uptake by the 2-NBDG method and Glucose Uptake Colorimetric Assay Kit. IGF1R was activated by IGF1 and blocked by AXL1717. The expression and distribution of IGF1R and GLUT-3, together with IGF1R phosphorylation, were measured by western blot. The binding between ZAG and IGF1R was determined by coimmunoprecipitation. Neuronal glucose uptake and GLUT-3 expression were significantly decreased by seizure or ZAG knockdown, whereas ZAG over-expression or IGF1 treatment reversed this decrease. The effect of ZAG on neuronal glucose uptake and GLUT-3 expression was blocked by AXL1717. ZAG increased IGF1R distribution and phosphorylation possibly by binding. Additionally, IGF1R increased GLUT-3 activity by increasing GLUT-3 expression. In epilepsy/seizure, neuronal glucose uptake suppression may be attributed to a decrease in ZAG, which suppresses neuronal GLUT-3 expression by regulating the activity of IGF1R. ZAG, IGF1R, and GLUT-3 may be novel potential therapeutic targets of glucose hypometabolism in epilepsy and seizures.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。