CD62E- and ROS-Responsive ETS Improves Cartilage Repair by Inhibiting Endothelial Cell Activation through OPA1-Mediated Mitochondrial Homeostasis

CD62E 和 ROS 反应性 ETS 通过 OPA1 介导的线粒体稳态抑制内皮细胞活化,从而改善软骨修复

阅读:5
作者:Pengcheng Tu, Yalan Pan, Lining Wang, Bin Li, Xiaoxian Sun, Zhongqing Liang, Mengmin Liu, Zitong Zhao, Chengjie Wu, Jianwei Wang, Zhifang Wang, Yu Song, Yafeng Zhang, Yong Ma, Yang Guo

Background

In the environment of cartilage injury, the activation of vascular endothelial cell (VEC), marked with excessive CD62E and reactive oxygen species (ROS), can affect the formation of hyaluronic cartilage. Therefore, we developed a CD62E- and ROS-responsive drug delivery system using E-selectin binding peptide, Thioketal, and silk fibroin (ETS) to achieve targeted delivery and controlled release of Clematis triterpenoid saponins (CS) against activated VEC, and thus promote cartilage regeneration.

Conclusions

CD62E- and ROS-responsive ETS/CS promoted cartilage repair by inhibiting VEC activation and macrophage inflammation and promoting BMSC chondrogenesis. Therefore, it is a promising therapeutic strategy to promote articular cartilage repair.

Methods

We prepared and characterized ETS/CS and verified their CD62E- and ROS-responsive properties in vitro. We investigated the effect and underlying mechanism of ETS/CS on inhibiting VEC activation and promoting chondrogenic differentiation of bone marrow stromal cells (BMSCs). We also analyzed the effect of ETS/CS on suppressing the activated VEC-macrophage inflammatory cascade in vitro. Additionally, we constructed a rat knee cartilage defect model and administered ETS/CS combined with BMSC-containing hydrogels. We detected the cartilage differentiation, the level of VEC activation and macrophage in the new tissue, and synovial tissue.

Results

ETS/CS was able to interact with VEC and inhibit VEC activation through the carried CS. Coculture experiments verified ETS/CS promoted chondrogenic differentiation of BMSCs by inhibiting the activated VEC-induced inflammatory cascade of macrophages via OPA1-mediated mitochondrial homeostasis. In the rat knee cartilage defect model, ETS/CS reduced VEC activation, migration, angiogenesis in new tissues, inhibited macrophage infiltration and inflammation, promoted chondrogenic differentiation of BMSCs in the defective areas. Conclusions: CD62E- and ROS-responsive ETS/CS promoted cartilage repair by inhibiting VEC activation and macrophage inflammation and promoting BMSC chondrogenesis. Therefore, it is a promising therapeutic strategy to promote articular cartilage repair.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。