Conclusion
Our results suggest SAHA attenuates the LPS-induced inflammatory response in the N9 microglial cells, and regulation of histone acetylation with HDACis might be a rational approach for the treatment of neuroinflammation.
Methods
Microglial cells were treated with SAHA (0.25, 0.5, 1.0, 1.25, 1.5 µM) and LPS (100 ng/mL) for 24 hours. Then, levels of the pro/anti-inflammatory cytokines interleukin-1 beta (IL-1β), IL-6, tumor necrosis factor alpha (TNF-α), and IL-10 were determined by the enzyme-linked immunosorbent assay. The total cellular HDAC activity was determined by colorimetric analysis. Additionally, the expression levels of nuclear factor kappa-B (NF-κB) were quantified via western blotting.
Results
SAHA (1.0 and 1.25 µM) attenuated the LPS-induced inflammatory response of microglial cells via decreasing NF-κB expression and pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) in the N9 microglial cells. Moreover, SAHA treatment improved IL-10 levels and prevented the LPS-induced increase in the HDAC activity in the microglial cells.
