Cholesterol-Independent Suppression of Lymphocyte Activation, Autoimmunity, and Glomerulonephritis by Apolipoprotein A-I in Normocholesterolemic Lupus-Prone Mice

载脂蛋白 AI 在胆固醇正常的狼疮易感小鼠中对淋巴细胞活化、自身免疫和肾小球肾炎进行胆固醇独立的抑制

阅读:5
作者:Leland L Black, Roshni Srivastava, Trenton R Schoeb, Ray D Moore, Stephen Barnes, Janusz H Kabarowski

Abstract

Apolipoprotein (Apo)A-I, the major lipid-binding protein of high-density lipoprotein, can prevent autoimmunity and suppress inflammation in hypercholesterolemic mice by attenuating lymphocyte cholesterol accumulation and removing tissue-oxidized lipids. However, whether ApoA-I mediates immune-suppressive or anti-inflammatory effects under normocholesterolemic conditions and the mechanisms involved remain unresolved. We transferred bone marrow from systemic lupus erythematosus (SLE)-prone Sle123 mice into normal, ApoA-I-knockout (ApoA-I(-/-)) and ApoA-I-transgenic (ApoA-I(tg)) mice. Increased ApoA-I in ApoA-I(tg) mice suppressed CD4(+) T and B cell activation without changing lymphocyte cholesterol levels or reducing major ApoA-I-binding oxidized fatty acids. Unexpectedly, oxidized fatty acid peroxisome proliferator-activated receptor γ ligands 13- and 9-hydroxyoctadecadienoic acid were increased in lymphocytes of autoimmune ApoA-I(tg) mice. ApoA-I reduced Th1 cells independently of changes in CD4(+)Foxp3(+) regulatory T cells or CD11c(+) dendritic cell activation and migration. Follicular helper T cells, germinal center B cells, and autoantibodies were also lower in ApoA-I(tg) mice. Transgenic ApoA-I also improved SLE-mediated glomerulonephritis. However, ApoA-I deficiency did not have the opposite effects on autoimmunity or glomerulonephritis, possibly as the result of compensatory increases in ApoE on high-density lipoprotein. We conclude that, although compensatory mechanisms prevent the proinflammatory effects of ApoA-I deficiency in normocholesterolemic mice, increasing ApoA-I can attenuate lymphocyte activation and autoimmunity in SLE independently of cholesterol transport, possibly through oxidized fatty acid peroxisome proliferator-activated receptor γ ligands, and it can reduce renal inflammation in glomerulonephritis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。