Cyclo(Val-Pro) and Cyclo(Leu-Hydroxy-Pro) from Pseudomonas sp. (ABS-36) alleviates acute and chronic renal injury under in vitro and in vivo models (Ischemic reperfusion and unilateral ureter obstruction)

假单胞菌属(ABS-36)中的 Cyclo(Val-Pro) 和 Cyclo(Leu-Hydroxy-Pro) 可减轻体外和体内模型(缺血再灌注和单侧输尿管阻塞)下的急性和慢性肾损伤

阅读:9
作者:Kirti Hira, Pravesh Sharma, Ashutosh Mahale, Onkar Prakash Kulkarni, A Sajeli Begum

Abstract

The study aimed to identify small molecules having potentiality in alleviating renal injury. Two natural compounds cyclo(Val-Pro) (1) and cyclo(Leu-Hydroxy-Pro) (2) were first evaluated under acute renal injury model of ischemic reperfusion at different doses of 25, 50 and 75 mg/kg body weight. Further, the compounds were subjected to antimycin A-induced ischemic in vitro study (NRK-52E cell lines). Both the compounds significantly decreased plasma IL-1β levels (P < 0.05). Also, the mRNA expression levels of inflammatory markers (TNF-α, IL-6 and IL-1β) and renal injury markers (KIM-1, NGAL, α-GST and π-GST) in the renal tissues were significantly alleviated (P < 0.01) along with the improvement in histological damage and control over neutrophil infiltration as a result of ischemic reperfusion. The in vitro study revealed the protective effect against antimycin A-induced cytotoxicity (P < 0.05) and antiapoptotic effect acting through the regulation of Bax, caspase 3 (pro and cleaved) and BCL2 with reduction in Annexin+PI+ cells. Further, the compound cyclo(Val-Pro) (1) was evaluated (50 mg/kg body weight dose) in chronic unilateral ureter obstruction model of renal injury in mice and TGF-β-induced in vitro fibrotic model (NRK-49F cell lines). Cyclo(Val-Pro) (1) significantly reduced the expression levels of fibrotic markers (collagen-1, α-SMA and TGF-β) and showed marked alleviation of renal fibrosis (sirius red staining). Also, the proliferation of TGF-β-induced NRK-49F cells was significantly reduced along with decreased levels of collagen-1 and α-SMA in immunohistochemistry studies. In conclusion, the compounds significantly abrogated ischemic injury by inhibiting renal inflammation and tubular epithelial apoptosis. Further, cyclo (Val-Pro) (1) exhibited significant anti-fibrotic activity through the inhibition of fibroblast activation and proliferation. Thus, these proline-based cyclic dipeptides are recommended as drug leads for treating renal injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。